(Following Paper ID and Roll No. to be filled in your Answer Book)											
PAPER ID: 214201	Roll No.										

MCA.

(SEM. II) THEORY EXAMINATION 2013-14

COMPUTER BASED NUMERICAL AND STATISTICAL TECHNIQUES

Time: 3 Hours Total Marks: 100

Note: - Attempt questions from each Section as indicated:

SECTION-A

 $(10 \times 2 = 20)$

Attempt all parts:

- 1. Define 'Absolute error' and 'Relative error'. An approximate value of π is given as 3.1428571 and its true value is 3.1415926. Find absolute and relative errors.
- 2. In a normalized floating point mode, carry out the following mathematical operation: (0.4546 E3) + (0.5454 E8).
- 3. Evaluate $\sqrt{2}$ correct to four decimal places using Newton-Raphson method.
- 4. Write an algorithm for finding roots using iteration method.
- 5. What is an ill-conditioned system?
- 6. What do you mean by interpolation and extrapolation?
- 7. Find unique polynomial p(n) of degree 2 such that : P(1)=1, P(3)=27, and P(4)=64.

- 8. What is the principle of least squares for curve fitting.
- 9. Prove the formula for fitting a straight line.
- 10. Explain the terms:
 - (a) Null hypothesis
 - (b) Level of significance.

SECTION-B

 $(3 \times 10 = 30)$

Attempt any three:

- 1. (a) Write an algorithm for Regula-Falsi method. Also implement this algorithm in C language.
 - (b) Prove that order of convergence of Secant method is 1.62.
- 2. (a) Find the real root of the equation $x^3 + x^2 1 = 0$ on the interval [0, 1] with the accuracy of 10^{-4} by iteration method.
 - (b) Determine it the following system is ill-conditioned:

$$100 x - 200 y = 100$$

$$-200 x + 400 y = -100$$

3. Apply Gauss-Siedal iteration method to solve the equations:

$$20x + y - 2z = 17$$
; $3x + 20y - z = -18$; $2x - 3y + 20z = 25$

4. Find the value of log 58.75, if the given table is:

1	x	40	45	50	55	60	65
	log x	1.60206	1.65321	1.69897	1.74036	1.77815	1.81291

- 5. Prove that:
 - (i) $E = 1 + \Delta$

- (ii) $\Delta = \nabla (1 \nabla)^{-1}$
- (iii) $\delta = E^{1/2} + E^{-1/2}$
- (iv) e^{hD}
- (v) $\nabla = 1 E^{-1}$

SECTION-C

 $(5 \times 10 = 50)$

5.0

Attempt any five:

1. (a) Apply Gauss forward formula to get f (3.75), if given:

x:2.5

3.0

3.5

4.:

f : 24.145 22.043 20.225 18.644 17.262 16.047

(b) Apply Bessel's formula to obtain y₂₅ from the table below:

x : 20

24

28

3544

32

: 2854

3162

3992

2. (a) Prove that nth differences of a polynomial of degree n is constant and all other higher differences are zero.

- (b) Explain Numerical differentiation and Numerical integration.
- 3. Find y(1), if y(x) is the solution of $\frac{dy}{dx} = x^2 + y^2$ by Range-Kutta method, in two steps taking h = 0.5. Given y(0) = 0
- 4. Evaluate $\int_0^6 dx / (1 + x^2)$ using
 - (i) Simpson's 1/3 rule
 - (ii) Simpson's 3/8 rule

3

5. A rod is rotating in a plane the following table gives the angle θ (in radians) through which the rod has turned for various values of time t (in seconds). Calculate the angular velocity of the rod at t = 0.6 seconds:

t: 0 0.2 0.4 0.6 0.8 1.0 $\theta: 0 0.12 0.49 1.12 2.02 3.20$

- 6. (a) For 10 observations on price 'x' and supply 'y'. The following data were obtained: Σ x = 130, Σ y = 220, Σ x² = 228, Σ y² = 5506, Σ xy = 3467. Obtain the line of regression of 'y on x' and estimate the supply when price is 16 units.
 - (b) Prove that regression coefficients are independent of origin but not to scale.
- 7. (a) A die is thrown 90 times and the no. of faces shown are:

faces : 1 2 3 4 5 6 frequency : 18 14 13 15 14 16

Test whether the die is fair (Given χ_5^2 and .05 = 11.07)

(b) Given the following information about two samples drawn from two normal population:

 $n_1 = 8$, $\Sigma (x - \bar{x})^2 = 94.5$, $n_2 = 10$ and $\Sigma (y - \bar{y})^2 = 101.7$

Test the equality of two popular variances. (Given: $f_{7.9}(0.5) = 3.29$)

4